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Analytical expressions of the elastic displacement fields
induced by straight dislocations in decagonal, octagonal
and dodecagonal quasicrystals

Yueling Qin†‡, Renhui Wang, Di-hua Ding and Jianlin Lei
Department of Physics, Wuhan University, Wuhan 430072, People’s Republic of China

Received 9 February 1996, in final form 7 August 1996

Abstract. According to the generalized Eshelbyet al (1953Acta Metall. 1 251) method of a
straight dislocation line in quasicrystals (QCs), the analytical expressions for elastic displacement
fields induced by dislocations in decagonal, octagonal and dodecagonal QCs have been derived
when the dislocation lines are parallel to some symmetry axes.

1. Introduction

During the last few years, dislocations have been observed in quasicrystals (QCs) by
transmission electron microscopy (TEM), and their Burgers vectors have been identified
experimentally using diffraction contrast imaging [1–4] and convergent-beam electron
diffraction [5, 6] techniques. In order to understand the effect of dislocations on the
properties of QCs and to simulate the electron micrographs relevant to dislocations in
QCs, the elasticity theory of dislocations, including the expressions for the elastic fields
induced by these defects in QCs are a prerequisite. It is well known that the systematic
theory of elasticity of defects in periodic crystals was established more than 20 years ago
as summarized in [7, 8], but the problem for QCs is more difficult than in crystals.

Recently, the elastic constant matrices [C], [K] and [R] for many types of QC were
derived [9, 10] and a generalized elasticity theory of QCs was established [11]. Then an
elastic model of dislocations in QCs based on the Green function method was suggested
by Ding et al [12], and some analytical expressions for the displacement fields of straight
dislocation lines were derived both in decagonal [12] and in dodecagonal [13] QCs.

On the other hand, in the case of crystals, besides the Green function method, there
are other methods. An example is the method developed by Eshelbyet al [14]. Recently
Ding et al [15] have generalized the Eshelbyet al method to the case of QCs and obtained
expressions for the elastic fields of straight dislocation lines. The purpose of this paper is to
apply the generalized Eshelbyet al method to derive analytical expressions for the elastic
displacement fields for some special straight dislocation lines in two-dimensional (2D) QCs.
According to conventions of QC research [9, 10], hereafter a 2D QC refers not to a plane
but to a three-dimensional (3D) body periodically stacked in a 2D quasiperiodic structure.
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2. Basic theoretical model

QCs possess two types of displacement field: one is the phonon fieldu(r) in the physical
subspace, and the other is the phason fieldw(r) in the perpendicular subspace, where
r is the position vector in the physical subspace. They satisfy the homogeneous partial
differential equations (omitting the body forcefi andgi) [11]:

C ′
ijkl∂j ∂luk + R′

ijkl∂j ∂lwk = 0

R′
klij ∂j ∂luk + K ′

ijkl∂j ∂lwk = 0
(1)

where the elastic constantsC ′
ijkl and K ′

ijkl are associated with the phonon and phason
fields, respectively, andR′

ijkl is associated with the possible coupling between the phonon
and phason fields. They are referred to the conventional coordinate systems. The symbol
∂j ≡ ∂/∂xj , and the subscriptsi, j, k, l can be 1, 2 or 3. By choosing a dislocation
orthogonal coordinate system(x1, x2, x3) in the physical subspace with thex3 axis parallel to
the dislocation line and the corresponding coordinate system in the perpendicular subspace,
and after transforming elastic constants to these systems, equation (1) has the following
form:

CiJkL∂J ∂Luk + RiJkL∂J ∂Lwk = 0

RkLiJ ∂J ∂Luk + KiJkL∂J ∂Lwk = 0
(2)

whereCiJkL, KiJkL andRiJkL are all referred to the dislocation coordinate system.J and
L take only the values 1 and 2.

Now we introduce the following symbols:

Vβ(r) = δ
β

k uk(r) + δ
β−3
k wk(r) (3)

B
αβ

jl = δα
i (δ

β

k Cijkl + δ
β−3
k Rijkl) + δα−3

i (δ
β

k Rklij + δ
β−3
k Kijkl) (4)

where

δα
i =

{
1 α = i

0 α 6= i
(5)

and the Greek lettersα, β take the values 1, 2, 3, 4, 5 and 6.
By using these symbols, equation (2) can be rewritten as the standard form

B
αβ

JL∂J ∂LV β(r) = 0. (6)

According to Eshelbyet al [14], equation (6) has solutions of the type

Vβ(r) = Aβf (η) (7)

where

η = x1 + px2 (8)

with p being a constant to be determined as follows.
If we substitute equation (7) into (6) and introduced a 6× 6 matrix

aαβ = B
αβ

11 + (B
αβ

12 + B
αβ

21 )p + B
αβ

22 p2 (9)

then a set of linear algebraic equations forAβ can be obtained as follows:

aαβAβ = 0. (10)

The parameterp in equation (8) is determined by the condition

det|aαβ | = 0. (11)
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Following the analogous procedure proposed by Eshelbyet al [14], the displacements
induced by an infinite straight dislocation line parallel to the positivex3 axis can be expressed
by the form

V β(r) = Re

[ 6∑
n=1

1

±2π i
Aβ(n)D(n) ln[η(n)]

]
(12)

where Re means that only the real part is to be taken, the sign of 2π i is taken to be the
same as the sign of the imaginary part ofp(n), and the six complex constantsD(n) are
determined by the following 12 equations

Re

[ 6∑
n=1

Aβ(n)D(n)

]
= bβ (13)

Re

[ 6∑
n=1

(B
αβ

21 + B
αβ

22 p(n))Aβ(n)D(n)

]
= 0 (14)

wherebβ are the components of the Burgers vectorb̃ of the dislocation.

3. Conditions for analytical solutions

A main crux in the generalized Eshelbyet al method is to deal with solutions of a twelfth-
order equation forp. As we know, unfortunately, only polynomials of fourth or lower order
can be solved by general algebraic methods. Therefore, in order to obtain the elastic fields
induced by straight dislocation line in QCs, we must in general employ some numerical
calculations. However, it is still possible to find analytical expressions for the elastic fields in
some special conditions. The key to the question is whether equation (10) can be separated
into two independent and lower-dimensional sets of equations which can be solved by an
algebraic method.

It is apparent that, if the elements

a13 = a23 = a43 = a53 = a16 = a26 = a46 = a56 = a31 = a32 = a34 = a35 = a61 = a62

= a64 = a65 = 0 (15)

of the matrixaαβ are all equal to zero, then the set of equations (10) is separated into the
following two independent sets: one set forA1, A2, A4 andA5 given by

a11A1 + a12A2 + a14A4 + a15A5 = 0

[3pt ]a21A1 + a22A2 + a24A4 + a25A5 = 0

[3pt ]a41A1 + a42A2 + a44A4 + a45A5 = 0

[3pt ]a51A1 + a52A2 + a54A4 + a55A5 = 0

(16)

and the other set forA3 andA6 given by

a33A3 + a36A6 = 0

[3pt ]a63A3 + a66A6 = 0.
(17)

The conditions in equation (15) are true provided that the following elastic constants
which refer to the dislocation coordinate system are all equal to zero:
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C14 = C15 = C24 = C25 = C46 = C56 = 0 (18)

K1131 = K1132 = K2231 = K2232 = K3111 = K3122 = K3112 = K3121 = K1231 = K1232

= K3211 = K3222 = K3212 = K3221 = K2131 = K2132 = 0 (19)

R1131 = R1132 = R2231 = R2232 = R3111 = R3122 = R3112 = R3121 = R1231 = R1232

= R3211 = R3222 = R3212 = R3221 = R2131 = R2132 = 0. (20)

When I , J , K = 1 or 2, a twofold rotation around thex3 axis transformsCIJK3 into
−CIJK3 and hence we haveCIJK3 = 0 if the x3 axis is parallel to an even-fold symmetry
axis. Each elastic constant in equations (18)–(20) contains one subscript 3 and hence will
be equal to zero if thex3 axis is parallel to an even-fold symmetry axis. Therefore, if a
dislocation line in a 2D QC is parallel to an even-fold symmetry axis, then conditions (18)–
(20) are fulfilled and equation (10) can be separated into two independent equations (16)
and (17).

According to the dislocation condition (13),A1, A2, A4 andA5 are associated with the
Burgers vector componentsb‖

1, b
‖
2, b⊥

1 and b⊥
2 , respectively, which are all perpendicular

to the dislocation line, andA3 and A6 are associated withb‖
3 and b⊥

3 where the physical
componentb‖

3 is parallel to the dislocation line. Hence, the conditions in equation (15) give
rise to a separation of the solutions into two parts corresponding to the pure edge and pure
screw dislocations.

Obviously, the solutions of the set of equations (17) can be obtained by the algebraic
method because only a fourth-order equation inp is involved. It follows that analytical
expressions of the elastic fields induced by a pure screw dislocation line parallel to an
even-fold symmetry axis can be obtained.

However, to solve the set of equations (16), one will deal with solving an eighth-
order equation inp. It appears that the conditions in equation (15) are not enough to
give an analytical expression for pure edge dislocations. However, if thex1 (or x2) axis
in the defect coordinate system is also an even-fold symmetry axis in addition to thex3

axis, or equivalently if thex2–x3 plane (or if thex1–x3 plane) is a mirror plane, then the
displacement vectorV β(x1, x2) must be equal toV β(x1, −x2) and henceη = x1 + px2 and
η = x1 − px2 must appear simultaneously. Thus the roots must occur in pairs(p1, −p1),
(p2, −p2), (p4, −p4) and (p5, −p5). As a result, the determinant of the coefficient matrix
of equation (16) must be of the form

(p2 − p2
1)(p

2 − p2
2)(p

2 − p2
4)(p

2 − p2
5) = 0. (21)

Hence, in this case, we also have to solve only a fourth-order algebraic equation inp2.

4. Derivation of analytical expressions

In this section we shall apply the generalized Eshelbyet al method to dislocation lines along
even-fold (twofold, eightfold, tenfold or twelvefold) axes in 2D QCs to derive analytical
expressions for their elastic displacement fields. The 2D QC considered here is a 3D body
with a periodic axis and a 2D quasiperiodic plane.

4.1. Dislocation line lying in the quasiperiodic plane of octagonal two-dimensional
quasicrystals

In the conventional QC coordinate system of octagonal 2D QCs, i.e. thex ′
3 axis parallel to

the periodic direction and thex ′
1 axis parallel to one of the twofold axes in the quasiperiodic
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plane, the elastic constants of octagonal QCs with point groups 8/mmm, 8mm, 822 and
8̄m2 can be deduced from [9, 10] to be

C ′
ijkl(CKM) : C11, C12, C13, C33, C44, C66 = 1

2(C11 − C12)

K ′
ijkl : K ′

1111 = K ′
2222 = K1 K ′

1122 = K ′
2211 = K2 K ′

1221 = K ′
2112 = K3

K ′
1313 = K ′

2323 = K4 K ′
2121 = K ′

1212 = K1 + K2 + K3

R′
ijkl : R′

1111 = R′
1122 = −R′

2211 = −R′
2222 = R′

1221 = R′
2121 = −R′

1212 = −R′
2112 = R.

Consider a straight dislocation linet parallel to thex ′
1 axis which is a twofold axis. We

choose a dislocation coordinate system(x1, x2, x3) in which thex3 axis is along the positive
direction oft in the physical space, and thex2 axis is along the periodic axis. This system
can be obtained from the conventional QC system by the following subscript transformation:
1′ → 3, 2′ → 1, 3′ → 2. In the present paper, we take the same relationship between the
dislocation systemx⊥

1 , x⊥
2 and x⊥

3 and the QC systemx⊥′
1 , x⊥′

2 and x⊥′
3 in perpendicular

subspace, i.e. in this case we havex⊥′
1 → x⊥′

3 , x⊥′
2 → x⊥′

1 and x⊥′
3 → x⊥

2 . Then the
non-vanishing elastic constants in the dislocation coordinate system are as follows:

CiJkL : C1111 = C11 C2222 = C33 C1122 = C2211 = C13 C3131 = C66

C1212 = C2121 = C1221 = C2112 = C3232 = C44

KiJkL : K1111 = K1 K3131 = K1 + K2 + K3 K1212 = K3232 = K4

RiJkL : R1111 = R3131 = −R.

In this case, thex1 andx3 axes are all even-fold symmetrical. It is certain that analytical
expressions can be found. Equation (10) consists of five equations and is separated into
two independent sets of equations: one set forA1, A2 andA4 given by

(C11 + C44p
2)A1 + (C13 + C44)pA2 − RA4 = 0

(C13 + C44)pA1 + (C44 + C33p
2)A2 = 0

−RA1 + (K1 + K4p
2)A4 = 0

(22)

with p(n) = p(1), p(2), p(4), p(7), p(8) andp(10), and the other set forA3 andA6 given
by

(C66 + C44p
2)A3 − RA6 = 0

−RA3 + [(K1 + K2 + K3) + K4p
2]A6 = 0

(23)

with p(n) = p(3), p(6), p(9) andp(12).
Correspondingly, equation (11) also consists of two independent algebraic equations for

p:

C33C44K4p
6 + [K4(C11C33 − C2

13 − 2C13C44) + C33C44K1]p4 + [C11C44K4 − C33R
2

+K1(C11C33 − C2
13 − 2C13C44)]p

2 + C44(C11K1 − R2) = 0 (24)

and

C44K4p
4 + [C66K4 + C44(K1 + K2 + K3)]p

2 + C66(K1 + K2 + K3) − R2 = 0. (25)

Now we consider only the elastic displacement field of the screw component of the
dislocation withb̃ = (0, 0, b

‖
3, 0, b⊥

3 ). Obviously, we have to solve only equations (23) and
(25). Equation (25) has two pairs of complex conjugate roots. Pick out two rootsp(3) and
p(6) with a positive imaginary part:

p(3) =
√

s1 + s2

2C44K4
i p(6) =

√
s1 − s2

2C44K4
i (26)
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where

s1 = C66K4 + C44(K1 + K2 + K3) (27)

s2
2 = [C66K4 − C44(K1 + K2 + K3)]

2 + 4C44K4R
2. (28)

We arbitrarily putA3(3) = A3(6) = 1 and obtain from equation (23) the result

A6(3) = 2C44R

s1 − s2 − 2C66K4
(29)

A6(6) = 2C44R

s1 + s2 − 2C66K4
. (30)

Substituting equations (26), (29) and (30) into equations (13) and (14), and considering
n = 3, 6 andb3 = b

‖
3, b6 = b⊥

3 , we have

D(3) = s2 − s1 + 2C66K4

2s2
b

‖
3 − K4R

s2
b⊥

3 (31)

D(6) = s2 + s1 − 2C66K4

2s2
b

‖
3 + K4R

s2
b⊥

3 . (32)

Finally, since all the quantities needed for equation (12) are now given explicitly in
equations (26) and (29)–(32), one can find the displacement fields induced by a dislocation
with b̃ = (0, 0, b

‖
3, 0, b⊥

3 ) as follows:

V 3 = u3(r) = 1

4πs2

[
[(s2 − s1 + 2C66K4)b

‖
3 − 2K4Rb⊥

3 ] tan−1

(√
s1 + s2

2C44K4

x2

x1

)
+[(s2 + s1 − 2C66K4)b

‖
3 + 2K4Rb⊥

3 ] tan−1

(√
s1 − s2

2C44K4

x2

x1

)]
(33)

V 6 = w3(r) = C44R

2πs2

[(
−b

‖
3 − 2K4R

s1 − s2 − 2C66K4
b⊥

3

)
tan−1

(√
s1 + s1

2C44K4

x2

x1

)
+

(
b

‖
3 + 2K4R

s1 + s2 − 2C66K4
b⊥

3

)
tan−1

(√
s1 − s2

2C44K4

x2

x1

)]
. (34)

As a check, the formulae for the anisotropic case in a hexagonal crystal can be obtained
by limiting procedures, e.g. puttingR = 0 andK1, K2, K3, K4 → 0.

Equation (24), corresponding to the edge component of the dislocation with
b̃ = (b

‖
1, b

‖
2, 0, b⊥

1 , 0), is third order in p2 and can be solved algebraically, but the
calculations are very cumbersome and are omitted here for brevity.

4.2. Dislocation line lying in the quasiperiodic plane of a decagonal two-dimensional
quasicrystal

4.2.1. Dislocation line parallel to the A2P axis.The elastic constants of a decagonal
QC with point groups 10/mmm, 10mm, 1022 and10m2 are the same as those of the
octagonal QC exceptK3 in the octagonal QC should be replaced by−K2. Therefore, all
the corresponding formulae for the decagonal QC can be obtained by substituting−K2 for
K3, and the expressions for the displacement fields induced by a screw dislocation line
parallel to a twofold axis (A2P) in the decagonal QC are the same as equations (33) and
(34), except for parameterss1 ands2 which should be changed to

s1 = C66K4 + C44K1 (35)

s2
2 = (C66K4 − C44K1)

2 + 4C44K4R
2. (36)
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4.2.2. Dislocation line parallel to the A2D axis.As is known, there are two different
types of twofold axis in the quasiperiodic plane of the decagonal QC, i.e. A2P and A2D
axes. Now we consider a screw dislocation line parallel to the A2D axis and still choose
a dislocation coordinate system in which thex3 axis is along the dislocation line. Thex2

axis is along the periodic direction. This system can be obtained from the conventional QC
system by the following subscript transformation: 1′ → 1, 2′ → −3, 3′ → 2. After the
transformations, we find that all the elastic constants in this coordinate system are the same
as those in the coordinate system of section 4.2.1 except thatR is replaced by−R. This
means that there is no difference between the elastic properties of the A2P axis and the
A2D axis. Therefore, if the dislocation line is parallel to an A2D axis, then the expressions
are the same as equations (33) and (34) with the substitution of−K2 for K3 and −R for
R. This case was discussed in detail in [15] and we repeat it here for the completeness of
the present paper.

4.3. Dislocations in dodecagonal quasicrystals

4.3.1. Dislocation line in the quasiperiodic plane.The elastic constants of the dodecagonal
QC with point groups 12/mmm, 12mm, 1222 and12m2 are the same as those of the
octagonal QC withR = 0. Therefore, the formulae for the displacements induced by a
screw dislocation lying in the quasiperiodic plane and along the A2P axis in dodecagonal
QCs can be obtained directly from equations (33) and (34) by limiting procedures. When
R = 0, equation (33) yields

V 3 = u3(r) = b
‖
3

2π
tan−1

(√
C66

C44

x2

x1

)
. (37)

Care is required for equation (34), e.g.s2 = C66K4 − C44(K1 + K2 + K3) +
2C44K4R

2/[C66K4 − C44(K1 + K2 + K3)] as R → 0, and

lim
R→0

(
2K4C44R

2

s2(s1 − s2 − 2C66K4)

)
= 0 lim

R→0

(
2K4C44R

2

s2(s1 + s2 − 2C66K4)

)
= 1.

Then equation (34) becomes

V 6 = w3(r) = b⊥
3

2π
tan−1

(√
K1 + K2 + K3

K4

x2

x1

)
. (38)

Now we shall discuss the pure edge dislocation. In this case, equation (22) reduces to
two independent sets of equations due toR = 0: one set forA1 andA2 given by

(C11 + C44p
2)A1 + (C13 + C44)pA2 = 0

(C13 + C44)pA1 + (C44 + C33p
2)A2 = 0

(39)

and the other forA4 given by

(K1 + K4p
2)A4 = 0. (40)

Equation (39) is the same as that of the edge dislocation in crystals and the results with
the Burgers vector components (b1, b2, 0) have been given on pp 422–5 of [7]. Here we
shall consider only the elastic displacement field induced by the Burgers vector(b⊥

1 , 0), the
accompanying component in the perpendicular subspace of the Burgers vector of the pure
edge dislocation. Hence we have to solve only a second-order equation

K1 + K4p
2 = 0 (41)
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which has the solutions

p(4) =
√

K1

K4
i p(10) = −

√
K1

K4
i. (42)

Let A4 ≡ 1. Substituting equations (41) and (42) into equations (13) and (14), one can get

D(4) = b⊥
1 . (43)

Finally the expression for the phason displacement of an edge dislocation withb̃ = (b⊥
1 , 0)

can be given by

V 4 = w1(r) = b⊥
1

2π
tan−1

(√
K1

K4

x2

x1

)
. (44)

From the above, we have derived the expressions for the phason displacement fieldw
corresponding to the components(b⊥

1 , b⊥
3 ) as in equations (44) and (38).

4.3.2. Dislocation line parallel to the periodic direction.Now we consider a straight
dislocation line, parallel to the periodic direction (x3 axis) of a dodecagonal QC, with
an arbitrary Burgers vector̃b = (b

‖
1, b

‖
2, 0, b⊥

1 , b⊥
2 ). In this case, equation (10) can be

reduced to three independent sets of equations: one set forA1 andA2, the edge components
in the physical subspace, given by

(C11 + C66p
2)A1 + (C12 + C66)pA2 = 0

(C12 + C66)pA1 + (C66 + C11p
2)A2 = 0

(45a)

the second set forA3, the screw component in the physical subspace, given by

(C44 + C44p
2)A3 = 0 (45b)

and the third set forA4 andA5, the accompanying edge components in the perpendicular
subspace, given by

(K1 + 6p2)A4 + (K2 + K3)pA5 = 0

(K2 + K3)pA4 + (6 + K1p
2)A5 = 0

(46)

where

6 = K1 + K2 + K3. (47)

It can be seen from equation (45) that the expressions for the phonon displacement fieldu
of the dislocation with the Burgers vectorb = (b

‖
1, b

‖
2, b

‖
3) will be the same as those of the

dislocation in crystals. The results can be obtained from the anisotropic case by limiting
procedures:

u1 = b
‖
2

2π

[
tan−1

(
x2

x1

)
+ C11 − C66

C11

x1x2

r2

]
+ b

‖
2

2π

[
C66

C11
ln

(
r

r0

)
− C11 − C66

C11

x2
1

r2

]
u2 = − b

‖
1

2π

[
C66

C11

(
r

r0

)
− C11 − C66

C11

x2
2

r2

]
+ b

‖
2

2π

[
tan−1

(
x2

x2

)
− C11 − C66

C11

x1x2

r2

]
(48)

u3 = b
‖
3

2π
tan−1

(
x2

x1

)
.

Herer0 is the radius of the dislocation core.
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Next we shall solve equation (46) and give the expression for the phason displacement
field w corresponding to the perpendicular components(b⊥

1 , b⊥
2 ) of the Burgers vector.

Therefore, we have to solve only a fourth-order equation inp:

K16p4 + [K2
1 + 62 − (K2 + K3)

2]p2 + K16 = 0. (49)

The roots are of the form

p(4) = λ exp(iφ) p(10) = λ exp(−iφ)

p(5) = −λ exp(iφ) p(11) = −λ exp(−iφ).
(50)

whereλ andφ are given by

λ = 1

φ = 1

2
cos−1

[
(K2 + K3)

2 − K2
1 − 62

2K16

]
= π

2
.

(51)

We arbitrarily putA4 = 1 and obtain from equation (46) the result

A5(4) = −A5(5) = −K exp(−iφ) + 6 exp(iφ)

K2 + K3
. (52)

For convenience, we first considerb = (b⊥
1 , 0). Inserting equations (50) and (52) into

equations (13) and (14) and puttingb4 = b⊥
1 , b5 = 0, then we have

D(4) = −D(5) = b⊥
1

2

(
1 − i

K2
2 + 62 − K2

1 − K2
3

2K16 sin(2φ)

)
. (53)

Finally, the phason displacement field induced by(b⊥
1 , 0) can be obtained as follows:

V 4 = w1 = b⊥
1

4π

[
tan−1

(
2x1x2 sinφ

x2
1 − x2

2

)
− K2

2 + 62 − K2
1 − K2

3

2K16 sin(2φ)
ln

(q

t

)]
V 5 = w2 = b⊥

1

4π(K2 + K3)

{[
(K1 + 6) cosφ − (K1 − 6)(K2

2 + 62 − K2
1 − K2

3)

4K16 cosφ

]
tan−1

×
(

x2
2 sin(2φ)

x2
1 − x2

2 cos(2φ)

)
+

[
(K1 − 6) sinφ + (K1 + 6)(K2

2 + 62 − K2
2 − K2

3)

4K16 sinφ

]
ln(qt)

}
(54)

where

q2 = x2
1 + x2

2 + 2x1x2 cosφ

t2 = x2
1 + x2

2 − 2x1x2 cosφ.
(55)

The results for the Burgers vector components(0, b⊥
2 ) can be obtained from the results

above by rotation of our coordinate system byπ/2 in the physical space and by 5π/2 in
the perpendicular space [13]. Combining these results, and using the limiting procedures

φ → π

2
and

lim
φ→π/2

(
tan−1{[x2

2 sin(2φ)]/[x2
1 − x2

2 cos(2φ)]}
cosφ

)
= 2x2

2

x2
1 + x2

2

lim
φ→π/2

(
1

sin(2φ)

)
ln

(q

t

)
= x1x2

x2
1 + x2

2
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Figure 1. Section–projection diagram of a perfect dodecagonal QC perpendicular to the
twelvefold axis.

one finds that the phason displacement fields of the dislocation with the Burgers vector
components(b⊥

1 , b⊥
2 ) are

w1 = b⊥
1

2π

[
tan−1

(
x2

x1

)
− (K1 + K2)(K2 + K3)

2K1(K1 + K2 + K3)

x1x2

r2

]
− b⊥

2

4π

[
K2(K1 + K2 + K3) − K1K3

K1(K1 + K2 + K3)
ln

(
r

r0

)
+ (K1 + K2)(K2 + K3)

K1(K1 + K2 + K3)

x2
1

r2

]
(56)

w2 = b⊥
1

4π

[
K2(K1 + K2 + K3) − K1K3

K1(K1 + K2 + K3)
ln

(
r

r0

)
+ (K1 + K2)(K2 + K3)

K1(K1 + K2 + K3)

x2
2

r2

]
+ b⊥

2

2π

[
tan−1

(
x2

x1

)
+ (K1 + K2)(K2 + K3)

2K1(K1 + K2 + K3)

x1x2

r2

]
.

Thus, we have obtained the general expression for the elastic displacement fields of
the dislocation with the Burgers vectorb̃ = (b

‖
1, b

‖
2, b

‖
3, b

⊥
1 , b⊥

2 ) as equations (48) and (56)
when the dislocation line is along the periodic direction.

4.4. Screw dislocations parallel to even-fold periodic axes of two-dimensional quasicrystals

When a dislocation line is parallel to an even-fold periodic axis, e.g. eightfold, tenfold
or twelvefold axis, of a 2D QC, thena36, a63 and a66 in equation (17) all vanish and
equation (17) is reduced to

(C44 + C44p
2)A3 = 0. (57)
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Figure 2. As for figure 1 but containing a dislocation, lying in the middle of the diagram and
perpendicular to the diagram, with a fictitious Burgers vector [00010], showing the effect of the
phason displacement. The lattice points indicated as full circles jump from the corresponding
full circles indicated in figure 1.

By comparing it with equations (40) and (45b) one can find the expression for the
phonon displacement for the screw dislocation withb̃ = (0, 0, b

‖
3, 0, 0) as follows:

V 3(r) = u3(r) = b
‖
3

2π
tan−1

(
x2

x1

)
(58)

which is exactly the displacement induced by a screw dislocation in an isotropic medium.

5. Section–projection diagrams of dodecagonal quasicrystal containing a dislocation
line parallel to the periodic direction

In order to show the difference between the displacement fields in QCs discussed in the
present paper and those in ordinary crystals, and also as an application of the expressions
deduced above, we provide here section–projection diagrams of the dodecagonal QC
containing a dislocation line parallel to the periodicx3 direction with a Burgers vector
b̃ = [10010], i.e.b‖

1 = 1, b
‖
2 = 0, b

‖
3 = 0, b⊥

1 = 1 andb⊥
2 = 0 by using equations (48)

and (56). The section–projection diagrams were proposed by Katz and Duneau [16] and
applied by Wang and Wang [17] to describe the lattice model of a small dislocation loop in
icosahedral quasicrystal.

Figures 1–3 are section–projection diagrams perpendicular to the twelvefoldx3 axis. In
the calculation the following elastic constants were taken:C66/C11 = K2/K1 = K3/K1 =
0.3. Figure 1 shows a perfect dodecagonal QC which appears as perfect twelvefold general-
ized Penrose tilting consisting of 30◦, 60◦ and 90◦ rhombi. Figure 2 shows the diagram when
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Figure 3. As for figure 2 but with a Burgers vector [10010]. The bold line shows the glued
lips of the path removed in figure 2.

only phason strain is introduced, and figure 3 the diagram when both phason and phonon
strains are introduced. Dislocation cores are removed in both figures 2 and 3. It must be
emphasized that phason and phonon strains must be introduced simultaneously when the
Burgers vectorb‖ is along the quasiperiodic direction. We suppose that there is no phonon
displacement field in figure 2 in order to show the effect of the phason displacement field.
Of course this is not the real situation. By comparing figures 1 and 2 we can find that the
phason displacements cause rearrangements of some quasilattice points that are indicated as
full circles, i.e. the quasilattice points indicated as full circles in figure 1 jump to the corre-
sponding full circles in figure 2. We can also find that there are several ways of jumping.
Figure 4 summarizes 17 types of jumping where tiling diagrams of the perfect QC are drawn
with solid lines and those generated by rearrangements caused by phason strain are drawn
with broken lines. Figures 4(a), 4(b) and 4(c) show two, five and ten ways, respectively, by
which only one, two and three points have jumped. All these rearrangements of lattice points
are characteristic of QCs and do not happen in ordinary crystals. Moreover, we have shown
a shaded path in figure 2. This path is removed and then the lips are glued together when
the phonon strain is introduced as indicated by a bold line in figure 3. Figure 3 also shows
that the phonon displacements cause distortion of the quasilattice in the dodecagonal QC.

6. Discussion

In this paper, after having summarized the generalized Eshelbyet al method, we have
discussed the conditions for obtaining analytical solutions and derived analytical expressions
for the elastic displacement fields of some special dislocation lines in 2D QCs. By using
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(c)

Figure 4. Tiling diagrams showing the ways of jumping caused by phason strain. (a) Tiling
diagrams showing that only one point has jumped. (b) Tiling diagrams showing that two
points have jumped simultaneously. (c) Tiling diagrams showing that three points have jumped
simultaneously.

the Green function and eigenstrain methods, Yanget al [13] have calculated the elastic
displacement fields of dislocation lines either parallel to the periodic direction or lying in
the basal plane of a dodecagonal QC. Their results are in agreement with the expressions
in the present paper. This agreement further confirms the correctness of both the Green
function method and the generalized Eshelbyet al method developed by us. In addition to
the dislocation lines in dodecagonal QC, we have also derived the analytical expressions
of the displacement fields of dislocation lines lying in the basal plane of octagonal and
decagonal QCs for the first time.

According to our experience the generalized Eshelbyet al method is sometimes
complementary to the generalized Green function method for reducing analytical expressions
of the displacement fields induced by straight dislocations in QCs. For example, Dinget
al [12] succeeded in deducing analytical expressions for dislocation lines parallel to the
periodic direction (A10 axis) of a decagonal QC by using the generalized Green function
method but we have not succeeded by using the generalized Eshelbyet al method. On
the contrary, analytical expressions for dislocation lines lying in the quasiperiodic planes
of octagonal and decagonal QCs are deduced by using a generalized Eshelbyet al method
in the present paper but have not been obtained by using the generalized Green functions
method.
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